Switching Algebra (Chapter 2)

- Algebra represents (and can be used to manipulate) binary functions of binary inputs
- Manipulate: simplify (VERY nice machinery)

Boolean Algebra: Elements

- George Boole (1815-1864): "An investigation of the laws of thought" (1854)
- Boolean function: F(vars) = expression
- Expression: operators, variables, constants, groupings
 - Operators: Boolean + (OR), * (AND), and unary (NOT)
 Sometimes used for AND
 Sometimes used for NOT

 - Variables: Boolean-valued (0 and 1)
 Constants: 0 and 1

 - Groupings: parentheses ()

Definition of Boolean algebra

- The Boolean algebra is an algebra dealing with binary variables and logic operations. The variables are designated by letters of the alphabet, and the
 - three basic logic operations are AND, OR, and NOT (complementation).
- A Boolean algebra is an algebraic structure <**B**,+,•,'> where **B** is a set of numerical elements, ' is a unary negation operator, and + and • are binary operators. This collection of stuff must satisfy the following postulates (or axioms).

Operators

- OR (+; binary "sum") of 2 variables: output is 1 if either or both of the inputs is 1, otherwise 0
- AND (• or concatenation; binary product) of 2 variables: output is 1 if both of the inputs is 1, otherwise 0
- NOT (', overbar, ~; output is 1 if input is 0 and *vice versa*)

A	В	A+B	A∙B
0	0	0	0
0	1	1	0
1	0	1	0
1	1	1	1

A	A′
0	1
1	0

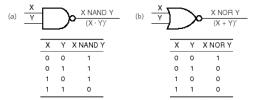
Example Boolean functions

- $F_1(x,y,z) = x \cdot y \cdot z$
- $\blacksquare F_2(x,y,z) = x' \bullet y' \bullet z' + x' \bullet y \bullet z + x \bullet y'$
- $F_3(x,y,z) = (x'+y) \cdot (x'+z)$
- *Literal*: a variable or its complement
- Product term: literals connected by •
- Expression: RHS of a function

Punch line: Binary Logic and Gates

Copyright © 2000 by Prentice Hall, Inc Digital Design Principles and Practices,

Punch line ctd.



Copyright © 2000 by Prentice Hall, Inc. Digital Design Principles and Practices, 3/e

Identity properties

- +, OR, "disjunction"
 - 0 is the identity: ORing anything with 0 leaves it unchanged
 - 1+0=1, 0+0=0, 1+1=1
- •, AND, "conjunction"
 - 1 is the identity: ANDing anything with 1 leaves it unchanged
 - $\mathbf{1} \cdot \mathbf{0} = \mathbf{0}, \ 1 \cdot 1 = \mathbf{1}, \ 0 \cdot 0 = 0$

Postulates

Note: ☐ means "there exists", ☐ means "for all".

- 1. **Digital Abstraction:** $\square x \square B = \{0,1\},\$
 - $x=0 \text{ if } x \neq 1$
 - $x=1 \text{ if } x \neq 0$
- (P5) Existence of complements and closure:

 □ x □ B, □ x ¹ □ B (called the complement of x) such that
 - x + x' = 1
 - x•x'=0

Postulates ctd. 3. Truth tables for •, +, ' ■ 0+0=0, 0+1=1+0=1, 1+1=1 **■** 0•0=0, 0•1=1•0=0, 1•1=1 **■** 0'=1, 1'=0 4. **Closure:** □ x, y □ B, ■ x+y 🛛 B ■ x•y 🛛 B ■ x' 🗌 B Postulates ctd. 5. (P3) Existence of identity elements \Box $x \Box$ B, \Box D B such that x+0=0+x=x. 6. **(P1) Commutative laws:** \Box x, y \Box B, Postulates ctd. 7. **(P2)Associative laws:** \square x, y, z \square B, x+(y+z) = (x+y)+z $x \bullet (y \bullet z) = (x \bullet y) \bullet z$ » Yields definition of n-input OR, AND 8. (P8) Distributive laws: $\Box x, y, z \Box B$, » $x \cdot (y+z) = x \cdot y + x \cdot z$ $x+(y\bullet z)=(x+y)\bullet (x+z)$ huh?

The Duality Principle

- The dual of an expression is obtained by exchanging (• and +), and (1 and 0) in it.
- If a particular Boolean equation is valid, its dual is also valid, provided that the precedence of operations is not changed.
- One can replace by + and + by <u>and</u> 0 by 1 and 1 by 0 in an equality and the resulting equality remains true.
- The precedence of the operands must remain the same.
- Cannot exchange x with x'

Theorems of Boolean Algebra

- The postulates are basic axioms of the algebraic structure and need not be proven.
- Theorems must be proved from the postulates.

(P4) Null elements

- x+1=1
- $x \cdot 0 = 0$
- Prove by **perfect induction**: consider all values of x and verify equality.
 - 0+1=1, 1+1=1
 - \bullet 0•0 = 0, 1•0 = 0 (complement)

		_
		_
		_
		_
		_
		_

(P6) Idempotency

- Prove by perfect induction
 - **■** 0+0 = 0
 - **■** 1+1 = 1

QED

■ By duality, $x \cdot x = x$ holds.

(P7) Involution

- $\blacksquare (x')' = x$
- **Proof:** perfect induction again
- (0')' = (1)' = 0QED

Distributive laws (again)

Distributivity: $\square x, y, z \square B$,

»
$$x \bullet (y+z) = x \bullet y + x \bullet z$$

$$_{\text{``}} x + (y \bullet z) = (x + y) \bullet (x + z)$$

Provable via perfect induction

(P11) DeMorgan's laws

- THESE ARE IMPORTANT
- $(x+y)' = x' \cdot y'$
- $(x \cdot y)' = x' + y'$

(P12) Absorption (Covering)

- $x + x \cdot y = x$
- $x \cdot (x+y) = x$
- Proof:

$$x + x \cdot y = x \cdot 1 + x \cdot y$$

= $x \cdot (1+y)$
= $x \cdot (y+1)$
= $x \cdot 1$
= x

QED (second part true by duality)

(P13) Consensus

- xy + x'z + yz = xy + x'z
- $(x+y) \bullet (x'+z) \bullet (y+z) = (x+y) \bullet (x'+z)$
- Proof:

$$xy + x'z + yz = xy + x'z + (x+x')yz$$

$$= xy + x'z + xyz + x'yz$$

$$= (xy + xyz) + (x'z + x'zy)$$

$$= xy + x'z$$
QED.

Truth table

- Enumerates all possible variable values (2ⁿ combinations for *n* variables) and lists the value of the function for each set of input values.
- The truth tables for some functions named $F_1(x,y,z)$, $F_2(x,y,z)$, and $F_3(x,y,z)$ are to the right.

х	у	z		F_1	F ₂	F_3
0	0	0		0	1	1
0	0	1		0	0	1
0	1	0		0	0	1
0	1	1		0	1	1
1	0	0	Г	0	1	0
1	0	1		0	1	0
1	1	0		0	0	0
1	1	1		1	0	1

Truth Table ctd.

- Truth table: a unique representation of a Boolean function (except for the interchange of rows, whose order is arbitrary).
- If two functions have identical truth tables, the functions are equivalent.
- Truth tables can be used to prove equality theorems.
- However, the size of a truth table grows exponentially with the number of variables involved, hence unwieldy. This motivates the use of Boolean Algebra.

Boolean expressions are not									
unique									
■ Unlike truth tables, expressions representing a Boolean function are NOT unique. ■ Example ■ F(x,y,z) = x'*y'*z' + x'*y*z' + x*y*z' ■ G(x,y,z) = x'*y'*z' + y*z' ■ The corresponding truth tables are to the right.	x 0 0 0 1 1	y 0 1 1 0 0	z 0 1 0 1 0	F 0 1 0 0 0	G 1 0 1 0 0 0				
	1	1	1	0	0				

Not unique ctd.

- These two functions have identical truth tables, so F() and G() represent the same function.
- F() = G(), even though their expressions appear different.

Algebraic Manipulation

- Boolean algebra is a useful tool for simplifying digital circuits.
- Why do it? Simpler is cheaper and smaller.
- Example: Simplify F = x'yz + x'yz' + xz.

$$F = x'yz + x'yz' + xz$$

$$= x'y(z+z') + xz$$

$$= x'y \cdot 1 + xz$$

$$= x'y + xz$$

Algebraic Manipulation ctd.

■ Example: Prove

$$x'\hat{y}'z' + x'yz' + xyz' = x'z' + yz'$$

■ Proof:

$$x'y'z'+x'yz'+xyz'$$

= $x'y'z'+x'yz'+x'yz'+xyz'$
= $x'z'(y'+y)+yz'(x'+x)$
= $x'z'\cdot 1+yz\cdot 1$
= $x'z'+yz'$

OED

Complement of a Function

- The complement of a function is obtained by interchanging AND and OR operations and complementing each variable and constant.
- Or change 1s to 0s and 0s to 1s in the truth table column containing F's value.
- One should not confuse the *complement* of a function with the *dual* of a function.

Complementation: example

- Find G(x,y,z), the complement of $F(x,y,z) = x^2yz^2 + x^2y^2z$
- G = F' = (x'yz' + x'y'z)'= $(x'yz')' \bullet (x'y'z)'$ DeMorgan = $(x+y'+z) \bullet (x+y+z')$ DeMorgan

Dual: example

- Find H(x,y,z), the dual of F(x,y,z) = x'yz' + x'y'z
- H = (x'+y+z')(x'+y'+z)

Canonical and Standard Forms ■ We are preparing to consider formal techniques for the simplification of Boolean functions. ■ Simplified functions in turn lead to "less expensive" logic circuits. **Maxterm and Minterm** • *Minterm*: For n variables, the minterm is a product (•, AND) term that contains each variable exactly once, in complemented or uncomplemented form. ■ In minterm m_i, a variable is complemented if its value in the binary equivalent of j is 0. ■ Must know the names and order of the variables! $F(x,y,z) = m_1 + m_4 + m_6$ means something specific. Maxterm and Minterm ctd. \blacksquare Maxterm: For *n* variables, the maxterm is a sum (+, OR) term which contains each variable exactly once, in complemented or

uncomplemented form.

specific.

In maxterm M_j, a variable is complemented if its value in the binary equivalent of j is 1.
 Variable names and order is important: F(a,b,c) = M₀•M₃•M₅ means something

Truth Table notation for minterms, maxterms

- Minterms and Maxterms are easy to denote using a truth table.
- Example (3 variables)

)	ĸ	y	z	Minterm	Maxterm
()	0	0	$x'y'z' = m_0$	$x + y + z = M_0$
()	0	1	$x'y'z = m_1$	$x{+}y{+}z'=M_1$
()	1	0	$x'yz' = m_2$	$x + y' + z = M_2$
()	1	1	$x'yz = m_3$	$x+y'+z'=M_3$
1	1	0	0	$xy'z'=m_4$	$x'+y+z=M_4$
1	l	0	1	$xy'z = m_5$	$x'+y+z'=M_5$
1	1	1	0	$xyz' = m_6$	$x'+y'+z=M_6$
1	1	1	1	$xyz = m_7$	$x'+y'+z'=M_7$

Canonical Forms

- Any Boolean function f() can be expressed as a *unique* sum of minterms (order of variables fixed).
- The minterms included are those m_j such that f() = 1 in row j of the truth table for f().
- Any Boolean function f() can be expressed as a unique **product** of **max**terms (order of variables fixed).
- The maxterms included are those M_j such that f() = 0 in row j of the truth table for f().

Canonical forms

- Any function, therefore, has two canonical forms
 - Canonical Sum-Of-Products (sum of minterms)
 - Canonical Product-Of-Sums (product of maxterms)

Example

- Truth table for $f_1(a,b,c)$ at right
- The canonical sum-of-products form for f₁ is

```
f_1(a,b,c) = a'b'c + a'bc' + ab'c' + abc'
```

■ The canonical product-of-sums form for f₁ is

$$f_1(a,b,c) = (a+b+c) \cdot (a+b'+c') \cdot (a'+b+c') \cdot (a'+b'+c').$$

a	b	c	f ₁	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	0	

Shorthand: \sum and \prod

- $f_1(a,b,c) = \sum m(1,2,4,6)$, where \sum indicates that this is a sum-of-products form, and m(1,2,4,6) indicates that the minterms to be included are m_1, m_2, m_4 , and m_6 .
- $f_1(a,b,c) = \prod M(0,3,5,7)$, where \prod indicates that this is a product-of-sums form, and M(0,3,5,7) indicates that the maxterms to be included are M_0 , M_3 , M_5 , and M_7 .

Conversion Between Canonical Forms

- Replace ∑ with ∏ (or *vice versa*) and replace those *js* that appeared in the original form with those that do not.
- Example:

$$\begin{split} f_1(a,b,c) &= a\text{'}b\text{'}c + a\text{'}bc\text{'} + ab\text{'}c\text{'} + abc\text{'}\\ &= m_1 + m_2 + m_4 + m_6\\ &= \sum (1,2,4,6)\\ &= \prod (0,3,5,7)\\ &= (a+b+c) \bullet (a+b+c') \bullet (a'+b+c') \bullet (a'+b'+c') \end{split}$$

Standard Forms

- Standard forms are like canonical forms except that not all variables need appear in the individual product (SOP) or sum (POS) terms.
- Example:

 $f_1(a,b,c) = a'b'c + bc' + ac'$ is a standard sum-of-products form

■ $f_1(a,b,c) = (a+b+c) \cdot (b'+c') \cdot (a'+c')$ is a standard product-of-sums form.

Conversion of SOP from standard to canonical form

- Expand non-canonical terms by inserting equivalent of 1 in each missing variable: (x + x') = 1
- Remove duplicate minterms

■ $f_1(a,b,c) = a'b'c + bc' + ac'$ = a'b'c + (a+a')bc' + a(b+b')c'= a'b'c + abc' + a'bc' + abc' + ab'c'= a'b'c + abc' + a'bc + ab'c'

Conversion of POS from standard to canonical form

- Expand noncanonical terms by adding 0 in terms of missing variables (e.g., xx' = 0) and using the distributive law
- Remove duplicate maxterms
- $f_1(a,b,c) = (a+b+c) \cdot (b'+c') \cdot (a'+c')$ = $(a+b+c) \cdot (aa'+b'+c') \cdot (a'+bb'+c')$ = $(a+b+c) \cdot (a+b'+c') \cdot (a'+b'+c') \cdot (a'+b+c') \cdot$

_				