
Department of Mathematics and Computer Science,
SUNY at Fredonia, Fredonia, New York.

CSIT 431 Introduction to Operating Systems Spring 2002
Second Mid-Term Test Solution

 NAME: ***********************SOLUTION******************************

Q1.
(a) Look at the diagram shown below that depicts a four-way intersection.

There are four cars present in the intersection that are heading North,
South, East and West. List all four conditions that must be present for a
deadlock to occur and discuss if these conditions are actually present in
this scenario or not.

(0.5 marks for listing conditions; 0.5 marks to show their presence
here)
FOUR CONDITIONS
1) Mutual Exclusion: PRESENT because road segments are non-

sharable. Cars cannot stand over one another
2) Hold & Wait: PRESENT because each car is holding onto a

segment of road and waiting for a segment to open up
3) No Preemption: PRESENT because you cannot forcibly remove

the road from a car

4) Circular Wait: PRESENT because car heading N is waiting for W-
bound car to go. W-bound car is waiting for S-bound car to go. S-
bound car is waiting for E-bound car to go and E-bound car is
waiting for N-bound car to leave.

(b) Suppose the processes in a system are designed like below:

Process Pi:
Start processing data
Request resource 1
Request resource 2
Process data with resource 1
Process data with resource 2
Release resource 1
Release resource 2

Are these processes prone to deadlock? If yes, Can the design be
changed to avoid deadlock?

2 Marks
(0.5 marks for YES, 0.5 marks for redesigning)
YES, they are prone to deadlock. Circular wait can result in the way the
resources are requested)
Design can be changed to request a resource, process data with it and then
release it before requesting another resource

Q2.
(a) What is the difference between deadlock prevention and deadlock

avoidance? Which technique would result in a more efficient use of
resources? Why?

(0.5 marks for correct definition of prevention and avoidance. 0.5 marks for
arguing which one is more efficient)
Deadlock prevention tries to break one of the four necessary conditions for a
deadlock. Deadlock avoidance allows the 3 necessary conditions to exist but

 2

it considers every request to see if it would lead to a deadlock. If yes, it will
deny that request.

Deadlock avoidance is more efficient in use of resources because we do not
limit or restrict the allocation of resources in the normal run until an
offending request is made.

(b) Define banker’s algorithm by explaining:

(0.5 marks for each part)

(I) Claim Matrix: One row for each process and one column for each

resource. Lists total requirements for each resource from all processes

(II) Allocation Matrix: Shows currently allocated resources for all processes

(III) Resource Vector: Gives total amount of all resources present in the system

 3

(IV) Safe State and Unsafe state: Safe state is one in which all processes can

run to completion in at least one sequence. Unsafe state is one in which such a

sequence does not exist

3 Marks

Q3.
(a) How is a deadlock detected? What steps can be taken to break the

deadlock?

(0.5 marks for detection; 0.5 marks for breaking the deadlock)
O.S. runs a deadlock detection algorithm to detect the circular wait
condition present for a set of processes. It uses a marking method to mark
all processes that are not currently deadlocked.
Deadlock can be broken by one of the following methods:
(a) Abort all deadlocked processes
(b) Backup to a deadlock free checkpoint and start over
(c) Abort one by one the deadlocked processes
(d) Pre-empt resources

(b) Consider a system with a total of 150 instances of a resource available

for allocation. The following table shows currently held and maximum
needs of three active processes

Process Max Need Current
Allocation

Still Needs

P1 70 45
P2 60 40
P3 60 15

 4

Complete the last column and then consider a new process P4 that will
need a maximum of 60 units. Use Banker’s algorithm to determine if the
system will be in a safe or unsafe state if P4 is allocated its current
request. Do it for both scenarios I and II and show full sequence of steps:

(i) P4 is currently requesting 25 units
(ii) P4 currently needs 35 units

2 Marks
(0.5 marks for part (i) and 0.5 marks for part (ii)
PART i

(a) P4 requests 25 units, it is allocated 25 units; Remainder: 25 units
(b) P1 is given 25 units; it is finished; Remainder:70 units
(c) P2 is given 20 units; P2 is finished; Remainder:110 units
(d) P3 is given 45 units; P3 is finished; Remainder:125 units
(e) P4 is given 35 units; P4 is finished; Remainder: 150 units

ALL FINISHED SUCCESSFULLY; IT IS A SAFE STATE

PART ii

(a) P4 requests 35 units, it is allocated 35 units; Remainder: 15 units
(b) No process can run to completion if they keep their current allocation

and request their balance. IT IS AN UNSAFE STATE

Q4.
(a) In the dining philosophers problem, five processes represent the

philosophers. Each process is supposed to think for a random amount of
time and then try to eat by acquiring forks on left and right. Using
semaphores, list the steps taken by each process for completing the
thinking and eating cycle. Since there are only 5 forks available, the
system may get into a deadlock. State a possible solution that can avoid
deadlock completely.

(0.5 marks for listing steps as below; 0.5 marks for deadlock free solution)
-think(random)
-wait(left fork)
-wait(right fork)
-eat()
-release the forks (signal(left fork) signal(right fork)

 5

Thinking random amount of time may reduce the probability of deadlock but
to completely eliminate deadlock, the only solution is to either increase the
number of forks to 6 or reduce the number of diners to 4

(b) Discuss how semaphores are implemented in UNIX. Mention their

components, system calls and specific values of interest.
2 Marks

(Too general statement: only 0.5 marks. UNIX specific discussion: 1 mark)
Components of UNIX semaphores:

(1) Current value
(2) PID of last process to operate on this semaphore
(3) Number of processes waiting for increment
(4) Number of processes waiting for zero
(5) Queues of the waiting processes

System calls: semctl (to set values) and semop (to operate on a semaphore)
Specific values of interest: 0;and negative values

Q5.

Suppose that a total of 64MB RAM is available in a system. This
memory space is partitioned into 8 fixed size slots of 8MB each.
Assume 8 processes are currently requesting memory usage with sizes
indicated as below:
[2M, 4M, 3M, 7M, 9M, 6M, 1M, 8M]
Calculate the size of memory wasted due to external and internal
fragmentation. Derive the memory utilization ratio by dividing the total
allocated memory by total requested memory.

2 Marks
(correct internal fragmentation result: 1 mark; external fragmentation:0.5

mark; correct utilization ratio: 0.5 mark)

Assuming exactly one slot can be given to each process:
INTERNAL FRAG: 6+4+5+1+2+7+0=25M
EXTERNAL FRAG: 8M (One slot unused because the process won’t fit)
UTIL RATIO: 56/40 or 56/64(if sizes of processes are ignored)

Assuming more than one slot can be given to each process:
INTERNAL FRAG:6+4+5+1+7+2+7=32M
EXTERNAL FRAG: Zero (but one process is left out)
UTIL RATIO: 64/40 or 64/64 (if sizes of processes are ignored)

 6

Q6.
(a) How will each of the listed schemes schedule a set of processes? Which

one is not a preemptive scheme?
(0.5 for first two parts, 0.5 for third part and stating which one is non-

preemptive)

(i) RR (Round robin): allows a time slot to each process; then

preempts and brings the next one

(ii) SPN (Shortest Process Next): It selects shortest process from

current waiting list and runs it to completion. SPN IS

NON_PREEMPTIVE

(iii) Feedback : On any job arrival/completion of time slot, current job

is preempted and moved to lower priority queue. Punishes longer

running jobs and favors short or fresh jobs

(b) Perform scheduling on this group of processes using SPN and Feedback
Schemes.

 7

Process Name Arrival Time Processing Time
A 0 1
B 1 9
C 2 1
D 3 9

2 Marks

(0.5 for SPN; 0.5 for Feedback)

SPN:
0-1: A
1-10:B
10-11:C
11-20:D

Feedback: (When time slice continues to increase as power of 2)
0-1:A
1-2:B
2-3:C
3-4:D
4-6:B
6-8:D
8-12:B
12-16:D
16-18:B
18-20:D

Q7.
(a) How many scheduling classes are defined in Linux and what are their

priorities?
(0.5 for mentioning real-time; 0.5 for specific classes)
SCHED_FIFO (Real-Time Highest Priority)
SCHED_RR (Real-Time Middle Priority)
SCHED_OTHERS (Non-RT other jobs Lowest)

 8

(b) Why does “gang scheduling” result in improved throughput on a

multiprocessor system?
2 Marks

(1 mark)
“Gang Scheduling” allows a set of related threads to run on a set of
processors. It improves throughput because all threads of a job run
concurrently thus eliminating waste of time in synchronization attempts

Q8.
(0.5 marks for each part)

(a) What is the difference between periodic and aperiodic tasks?: Periodic

tasks arrive regularly after set time periods. Aperiodic tasks can

arrive any time.

(b) Define RMS (Rate Monotonic Scheduling): RMS attaches highest

priority to the periodic tasks with shortest period

 9

(c) What is meant by a “soft deadline”?: A deadline that can be missed by a

small margin

(d) When we talk about coarse, medium and fine-grained synchronization,

what are we referring to?: Synch. Frequency is the number of

instructions executed before the threads or processes synchronize with

each other.

2 Marks

 10

Q9.

Assume three periodic tasks A, B and C arrive at the time t=0 to a real-
time system. Process A will continue to arrive every 20ms, it has
execution time of 10ms and a deadline of 20ms on arrival. Process B
arrives every 50ms, has execution time of 10ms and a deadline of 50ms
on arrival. Process C will arrive every 50ms, has execution time of 15ms
and a deadline of 50ms on arrival. Using EDF (Earliest Deadline First),
show that all processes meet their deadlines from t=0 to t=60ms by
drawing the schedule of the system.

3 Marks

(1 mark for each of A, B and C being scheduled correctly)

0-10:A1
10-20:B1
20-30:A2
30-45:C1
45-55:A3
55-60:B2….

Another solution

0-10:A1
10-25:C1
25-35:A2
35-45:B1
45-55:A3
55-60:C2….

 11

 12

	2 Marks
	3 Marks
	2 Marks
	2 Marks
	2 Marks
	2 Marks
	2 Marks
	2 Marks
	3 Marks

